Build an AI-native charting app
This example features lang2FHIR integrated with Medplum, an open-source FHIR platform to power an AI-native charting experience
✨ Using lang2FHIR to build an AI-native charting app!
You can integrate lang2FHIR into your EHR or FHIR server to create an AI-powered experience for your users! In this demo we're integrating lang2FHIR with Medplum using Medplum bots to invoke lang2FHIR API.
📹 Demo
Repo: https://github.com/PhenoML/medplum-provider-lang2fhir
It's open-source so feel free to fork and extend!
Medplum bot example
In the below bot ( link to source ) we construct a lang2FHIR create request from the input text to prepare an output FHIR resource. We can then insert relevant patient identifiers for resources which pertain to a specific patient given the context of how the bot is being invoked (such as from the patient's chart) prior to returning the response from the bot.
import { BotEvent, MedplumClient } from '@medplum/core';
import { QuestionnaireResponse, Observation, Procedure, Condition, Patient, MedicationRequest, CarePlan, PlanDefinition, Questionnaire } from '@medplum/fhirtypes';
import { Buffer } from 'buffer';
interface CreateRequest {
text: string;
version: string;
resource: string;
}
interface CreateBotInput {
text: string;
resourceType: 'QuestionnaireResponse' | 'Observation' | 'Procedure' | 'Condition' | 'MedicationRequest' | 'CarePlan' | 'PlanDefinition' | 'Questionnaire';
patient?: Patient;
}
type AllowedResourceTypes = QuestionnaireResponse | Observation | Procedure | Condition | MedicationRequest | CarePlan | PlanDefinition | Questionnaire;
const PATIENT_INDEPENDENT_RESOURCES = ['PlanDefinition', 'Questionnaire'] as const;
const PHENOML_API_URL = "https://experiment.app.pheno.ml";
export async function handler(
medplum: MedplumClient,
event: BotEvent<CreateBotInput>
): Promise<AllowedResourceTypes> {
try {
const { text: inputText, resourceType: inputResourceType, patient } = event.input;
if (!inputText) {
throw new Error('No text input provided to bot');
}
if (!inputResourceType) {
throw new Error('No target resource type provided');
}
// Validate patient context for patient-dependent resources
const requiresPatient = !PATIENT_INDEPENDENT_RESOURCES.includes(inputResourceType as any);
if (requiresPatient && !patient) {
throw new Error(`Patient context is required for resource type: ${inputResourceType}`);
}
// Limited set of resource types
if (!['Questionnaire', 'QuestionnaireResponse', 'Observation', 'Procedure', 'Condition', 'MedicationRequest', 'CarePlan', 'PlanDefinition'].includes(inputResourceType)) {
throw new Error(`Unsupported resource type: ${inputResourceType}`);
}
const targetResourceType = inputResourceType.toLowerCase();
// Transform to specific profiles for lang2FHIR create request
let targetResourceProfile: string;
switch (targetResourceType) {
case 'observation':
targetResourceProfile = 'simple-observation';
break;
case 'condition':
targetResourceProfile = 'condition-encounter-diagnosis';
break;
default:
targetResourceProfile = targetResourceType;
}
const email = event.secrets["PHENOML_EMAIL"].valueString as string;
const password = event.secrets["PHENOML_PASSWORD"].valueString as string;
const credentials = Buffer.from(`${email}:${password}`).toString('base64');
const authResponse = await fetch(PHENOML_API_URL + '/auth/token', {
method: 'POST',
headers: {
'Accept': 'application/json',
'Authorization': `Basic ${credentials}`
},
}).catch(error => {
throw new Error(`Failed to connect to PhenoML API: ${error.message}`);
});
if (!authResponse.ok) {
throw new Error(`Authentication failed: ${authResponse.status} ${authResponse.statusText}`);
}
const { token: bearerToken } = await authResponse.json() as { token: string };
if (!bearerToken) {
throw new Error('No token received from auth response');
}
const createRequest: CreateRequest = {
version: 'R4',
resource: targetResourceProfile,
text: inputText
};
const createResponse = await fetch(PHENOML_API_URL + '/lang2fhir/create', {
method: "POST",
body: JSON.stringify(createRequest),
headers: {
'Authorization': `Bearer ${bearerToken}`,
'Content-Type': 'application/json',
'Accept': 'application/json'
},
});
if (!createResponse.ok) {
throw new Error(`Create failed: ${createResponse.status} ${createResponse.statusText}`);
}
const generatedResource = await createResponse.json();
// Only add patient reference for patient-dependent resources
if (requiresPatient && patient) {
addPatientReference(generatedResource, patient);
}
return generatedResource as AllowedResourceTypes;
} catch (error) {
throw new Error(`Bot execution failed: ${error instanceof Error ? error.message : String(error)}`);
}
}
function addPatientReference(resource: any, patient: Patient): void {
if (!['QuestionnaireResponse', 'Observation', 'Procedure', 'Condition', 'MedicationRequest', 'CarePlan'].includes(resource.resourceType)) {
throw new Error(`Unsupported resource type for patient reference: ${resource.resourceType}`);
}
resource.subject = {
reference: `Patient/${patient.id}`,
display: patient.name?.[0]?.text || `Patient/${patient.id}`
};
}
Updated 3 days ago